Math, asked by monishamoni404, 10 months ago

1+cos theta divided by sintheta - sin theta divided by 1+cos theta =2 cot theta​

Answers

Answered by apm43
1

Answer:

Hey mate here is your answer...

 \frac{1 +  \cos( \beta ) }{ \sin( \beta ) }  -   \frac{ \sin( \beta ) }{1 +  \cos( \beta ) }  = 2 \cot( \beta )  \\   \frac{(1 +  \cos( \beta )) {}^{2} -  \sin ^{2} ( \beta )   }{ \sin( \beta) (1 +  \cos( \beta ) ) }  \\   \frac{1 +  \cos( \beta ) ^{2}  + 2 \cos( \beta ) -  \sin {}^{2} ( \beta )   }{ \sin( \beta )(1 +  \cos( \beta )  )}  \\  \frac{ \cos {}^{2} ( \beta ) +  \cos {}^{2} ( \beta ) + 2 \cos( \beta )   }{ \sin( \beta )(1 +  \cos( \beta ) ) }  \\  \frac{2 \cos {}^{2} ( \beta )  + 2 \cos( \beta ) }{ \sin( \beta )(1 +  \cos( \beta )  )}  \\  \frac{2 \cos( \beta )( \cos( \beta ) + 1)  }{ \sin( \beta ) (1 +  \cos( \beta ) )}  \\  \frac{2 \cos( \beta ) }{ \sin( \beta ) }  \\ 2 \cot( \beta )

hope answer will help you...

plz .mark my answer as a brainliest answer...

Answered by jaya2prema
1

Answer:    [HENCE PROVED]

Step-by-step explanation:

                                 

                                   

Attachments:
Similar questions