(1 + cos theta + i sin thera ) ( 1+ cos theta - i sin thera = ?
Answers
Answer:
Step-by-step explanation:
(1+cosA)(1-cosA)=(1)sq. -(cosA )sq
[by (a+b)(a-b)= (a)sq-(b)sq]
=hence (1-cosAsq)
=sinAsq
The complete question is
(1 + cosθ + isinθ) (1 + cosθ - isinθ) = ?
Solution :
Now, (1 + cosθ + isinθ) (1 + cosθ - isinθ)
= {(1 + cosθ) + isinθ} {(1 + cosθ) - isinθ}
= (1 + cosθ)² - (isinθ)²
{ using the algebraic identity
a² - b² = (a + b) (a - b) }
= (1 + cosθ)² - i²sin²θ
{ since (ab)² = a²b² }
= (1 + 2cosθ + cos²θ) - (- 1) sin²θ
{ using the algebraic identity
(a + b)² = a² + 2ab + b²
and since i² = - 1 }
= 1 + 2cosθ + cos²θ + sin²θ
= 1 + 2cosθ + (cos²θ + sin²θ)
= 1 + 2cosθ + 1
{ using trigonometric identity
sin²θ + cos²θ = 1 }
= (1 + 1) + 2cosθ
= 2 + 2cosθ
= 2 (1 + cosθ)
{ we can complete simplification
here or, we can proceed to next }
= 2 {1 + 2cos²(θ/2) - 1}
{ since cos2θ = 2cos²θ - 1 }
= 2 * 2cos²(θ/2)
= 4cos²(θ/2) ,
which is the required simplification.