Math, asked by sjenil5p7hmyq, 1 year ago

1+cos theta +sin theta /1+cos theta - sin theta=1/sec theta -tan theta

Answers

Answered by sprao534
4
Please see the attachment
Attachments:
Answered by Sharad001
97

Question :-

Prove that ,

  \sf\frac{1+ \sin \theta +  \cos \theta }{ 1 +  \cos \theta- \sin \theta }  =  \frac{1}{ \sec \theta -  \tan \theta}  \\

Proof :-

Formula used :-

 \star \:  \frac{1}{ \cos \theta} =  \sec \theta \\  \\  \star \:  \frac{ \sin \theta}{ \cos \theta}   =  \tan \theta \\  \\  \star \sf \:  { \sec}^{2}  \theta  -  { \tan}^{2}  \theta = 1

Explanation :-

We need to prove Left hand side is equal to right hand side ,

Taking left hand side (LHS)

 \rightarrow \: \sf\frac{ \sin \theta+  \cos \theta+ 1}{ \cos \theta -\sin \theta + 1}  \:  \\  \\  \sf \: taking \:  \cos \alpha \: common \: in \: both \\ \sf numenator \: and \: denomenator \\  \\  \rightarrow \: \sf\frac{ \tan \theta+ 1 +  \sec \theta}{ \sec \theta   + 1 -  \tan \theta}  \:  \\  \\  \rightarrow  \sf\frac{ \tan \theta + 1 +  \sec \theta}{ \sec \theta  -  \tan \theta \:  +  { \sec}^{2} \theta -  { \tan}^{2} \theta  }  \: \:  \\  \\  \rightarrow \sf\frac{ \tan \theta+ 1 +  \sec \theta}{ (\sec \theta   -  \tan \theta) + ( \sec \theta +  \tan \theta)( \sec \theta -  \tan \theta)}  \: \:  \\  \\  \rightarrow  \frac{ \tan \theta + 1 +  \sec \theta}{( \sec \theta -  \tan \theta)( 1 +  \tan \theta+ \sec \theta)}  \\  \\  \rightarrow \:  \frac{1}{ \sec\theta-  \tan \theta}

Left hand side = right hand side

hence proved .

\________________/

#answerwithquality

#BAL

Similar questions