1+cos theta+sin theta/1-cos theta+sin theta =1+sin theta by costheta
Answers
Answer:
{1+cos\theta + sin\theta}{1+cos\theta - sin\theta}={1+sin\theta}{cos\theta}
L.H.S.
{1+cos\theta + sin\theta}{1+cos\theta - sin\theta}
={1+cos\theta + sin\theta}{1+cos\theta - sin\theta}\times \frac{1+cos\theta + sin\theta}{1+cos\theta + sin\theta}
={(1+cos\theta +sin\theta)^2}{(1+cos\thta)^2-sin^2\theta}
={(1+cos\theta)^2+sin^2\theta + 2 sin\theta(1+cos\theta)}{1+cos^2\theta + 2cos\theta - sin^2 \theta}
={1+cos^2\theta + 2 cos\theta + sin^2\theta + 2 sin\theta(1+cos\theta)}{1+cos^2\theta + 2cos \theta - 1 + cos^2 \theta}
={1+1+2cos \theta + 2 sin \theta( 1+cos\theta)}{2cos^2\theta + 2 cos\theta} (sin^2\theta + cos^2 \theta = 1)
={2+2cos\theta + 2sin\theta cos\theta + 2 sin \theta}{2cos^2 \theta + 2 cos \theta }
={2(1+cos\theta)+2sin \theta ( 1+ cos \theta)}{2cos \theta (cos \theta + 1)}
={1+sin\theta }{cos \theta }
R.H.S.
Hence, proved.