1+ cos theta + sin theta\sin theta + cos theta= 1-sin theta cos theta
Answers
Answered by
3
Step-by-step explanation:
LHS = (sinθ - cosθ + 1)/(sinθ + cosθ - 1)
dividing by cosθ both Numerator and denominator
= (sinθ/cosθ - cosθ/cosθ + 1/cosθ)/(sinθ/cosθ + cosθ/cosθ - 1/cosθ)
= (tanθ + secθ - 1)/(tanθ - secθ + 1)
Multiply (tanθ - secθ) with both Numerator and denominator
= (tanθ + secθ - 1)(tanθ - secθ)/(tanθ - secθ + 1)(tanθ - secθ)
= {(tan²θ - sec²θ) - (tanθ - secθ)}/(tanθ - secθ + 1)(tanθ - secθ)
= (-1 - tanθ + secθ)/(tanθ - secθ + 1)(tanθ - secθ) [ ∵ sec²x - tan²x = 1 ]
= -1/(tanθ - secθ) = 1/(secθ - tanθ) = RHS
plzz like
Similar questions
Science,
4 months ago
Math,
4 months ago
Science,
4 months ago
Geography,
9 months ago
Computer Science,
1 year ago