(1-cos tita)(1+cos tita)(1+cot²tita)
Answers
Answer:
(Please do not miss the Ф symbol)
Step-by-step explanation:
(1 - cosФ)(1 + cosФ)(1 + cot²Ф)
By using (a-b)(a+b) = (a²-b²),
{(1 - cosФ)(1 + cosФ)}(1 + cot²Ф)
⇒ (1² - cos²Ф) (1 + cot²Ф)
⇒ (1 - cos²Ф) (1 + cot²Ф) · · · (As 1² = 1)
Now, we can use, (x-a)(x-b) = x² - (a+b)x + ab, · · · (Here x=1, a=cos²Ф, b=cot²Ф)
⇒ 1² - (cos²Ф + cot²Ф)1 + (cos²Ф)(cot²Ф)
⇒ 1 - (cos²Ф + cot²Ф) + (cos²Ф)(cot²Ф)
Wkt, cotФ = cosФ/sinФ, i.e., 1/tanФ
So, let us substitute this in the above equation:
⇒ 1 - (cos²Ф + cot²Ф) + (cos²Ф)(cot²Ф)
⇒ 1 - (cos²Ф + cos²Ф/sin²Ф) + (cos²Ф)(cos²Ф/sin²Ф)
⇒ 1 - (cos²Ф + ) + (cos²Ф)( ) (Please do not miss the Ф symbol)
Now, let us use LHS:
⇒ 1 - () + (Please do not miss the Ф symbol)
⇒ 1 - + (Please do not miss the Ф symbol)
The denominators have the same value:
⇒ 1 - (Please do not miss the Ф symbol)
Let's bring the "1" into the equation as well:
⇒ · · · (The denominator for 1 becomes sin²Ф, so 1 can be represented as sin²Ф/sin²Ф.)
⇒ (Please do not miss the Ф symbol)
We know that sin²Ф + cos²Ф = 1,
⇒ · · · (I have simple re-arranged the terms.)
⇒
⇒ (Please do not miss the Ф symbol)
Now, let's take the common term: cos²Ф,
⇒ (Please do not miss the Ф symbol)
Once again, we have sin²Ф + cos²Ф = 1,
⇒
⇒ (Please do not miss the Ф symbol)
To simplify the equation further, we can use sin²Ф + cos²Ф = 1, and write
sin²Ф = 1 - cos²Ф, in the denominator: (Re-arranging the terms)
⇒ (Please do not miss the Ф symbol)
So, the answer is (1 + cos²Ф)/(1 - cos²Ф)
I really hoped you understood it!
All the Best!