1+cos titha+sin titha/1+cos titha-sin titha=1+sin titha cos titha
Answers
Answered by
3
Answer:
Hope it's correct thank you ~♥~
Attachments:
Answered by
2
Step-by-step explanation:
cos2θ(1tanθ)+sin3θ(sinθ-cosθ)=(1+sinθcosθ)
LHS= cos2θ(1-tanθ)+sin3θ(sinθ-cosθ)
= cos2θ1-sinθcosθ+sin3θ(sinθ-cosθ)
= cos3θ(cosθ-sinθ)+sin3θ(sinθ-cosθ)
= cos3θ-sin3θ(cosθ-sinθ)
=
(cosθ-sinθ)(cos2θ+cosθsin+sin2θ)(cosθ-sinθ)
= (sin2θ+cos2θ+cosθsinθ)
= (1+sinθcosθ)
=RHS
Hence, L.H.S = R.H.S.
Similar questions