Math, asked by jiyariya, 1 year ago

√1+cos x/√1-cos x = cosec x + cot x

Answers

Answered by 8707097291
52
plese tell me helpful or not and you can follow me
Attachments:
Answered by isafsafiya
16

Answer:

\frac{ \sqrt{1 +  \cos \: x } }{ \sqrt{ 1 -  \cos \: x } }  =  \cosec \: x \:  +  \cot \: x  \\  \\

Step-by-step explanation:

solution------>

Given :-

 \frac{ \sqrt{1 +  \cos \: x } }{ \sqrt{ 1 -  \cos \: x } }  =  \cosec \: x \:  +  \cot \: x \\  \\

LHS =

 \frac{ \sqrt{1 +  \cos \: x } }{ \sqrt{ 1 -  \cos \: x } } \:  \\  \\ multiply \: with \: the \:   \sqrt{1 +  \cos \: x }  \\  \\ we \: get \\  \frac{ \sqrt{1 +  \cos \: x } }{ \sqrt{ 1 -  \cos \: x } } \:  \times  \sqrt{ \frac{1 +  \cos \: x }{1 -  \cos \: x } }  \\  \\ we \: get \\  \\   \frac{ \sqrt{ {(1 + cosx)}^{2} } }{ \sqrt{1 -  {cos \: x}^{2} } }   \\  \\  \sqrt{ \frac{ ({1 +  \cos \: x })^{2} }{  {\sin \: x}^{2}  } } .........1 -  { \ \cos  \: x }^{2}   = { \sin \: x }^{2}  \\  \\  \\ taking \: squre \: root \: out \: we \: get \\  \\  \frac{1 +  \cos \: x }{ \sin \: x }  \\  \\ now \: split \: this \\  \\  \frac{1}{ \sin \: x }  +  \frac{ \cos \: x }{ \sin \: x }  \\  \\ we \: get \\  \\ cosec \: x + cot \: x.................( \frac{1}{sin \: x}  = cosec \: x \: and \:  \frac{cos \: x}{sin \: x}  = cot \: x \\  \\ there \: for \: its \: prove

\frac{ \sqrt{1 +  \cos \: x } }{ \sqrt{ 1 -  \cos \: x } }  =  \cosec \: x \:  +  \cot \: x  \\  \\  \\

Similar questions