Math, asked by nikitasavn, 4 months ago

1-COS X/1+ COS X

differentiate the following​

Answers

Answered by VishnuPriya2801
9

Answer:-

We have to differentiate:

 \implies \sf \:  \dfrac{1 -  \cos(x) }{1 +  \cos(x) }

Differentiating w.r.t x , we get;

 \implies \sf \:  \dfrac{d}{dx}   \bigg[ \dfrac{1 -  \cos(x) }{1 +  \cos(x) }  \bigg ]

using ;

 \sf  \dfrac{d}{dx}  \bigg(\dfrac{u}{v}  \bigg) =  \dfrac{v \bigg( \dfrac{du}{dx} \bigg)  - u \bigg( \dfrac{dv}{dx} \bigg) }{ {v}^{2} }

We get;

 \\ \implies \sf \:  \frac{(1 +  \cos(x) ) \bigg( \dfrac{d}{dx}(1 -   \cos(x))  \bigg)  - (1  -  \cos(x)) \bigg( \dfrac{d}{dx}(1  +    \cos(x))  \bigg)}{ {(1 +  \cos(x)) \ }^{2} }  \\   \\

using;

d/dx (u ± v...) = d/dx (u) ± d/dx (v) +....

we get,

 \\  \implies \sf \:  \frac{(1 +  \cos(x) ) \bigg( \dfrac{d}{dx}(1)-    \dfrac{d}{dx}( \cos(x))  \bigg)  - (1  -  \cos(x)) \bigg( \dfrac{d}{dx}(1)  +    \dfrac{d}{dx}  (\cos(x))  \bigg)}{ {(1 +  \cos(x)) \ }^{2} } \\  \\

using, d/dx (constant) = 0 & d/dx (cos x) = - sin x we get,

 \\  \implies \sf \frac{(1 +  \cos(x)) \big( -( -  \sin(x)  \big)  - (1 -  \cos(x)) \big( -  \sin(x)  \big) }{ {(1 +  \cos(x) )}^{2} }  \\  \\  \\ \implies \sf \:  \frac{(1 +  \cos(x))( \sin(x)) - (1 -  \cos(x))( -  \sin(x)  )  }{ {(1 +  \cos(x)) }^{2} }  \\  \\  \\ \implies \sf \: \frac{ \sin(x) +  \sin(x) . \cos(x)  - ( -  \sin(x)  +  \sin(x). \cos(x) )   }{ {(1 +  \cos(x) )}^{2} }  \\  \\  \\ \implies \sf \: \frac{ \sin(x)  +  \sin(x). \cos(x) +  \sin(x)   -  \sin(x). \cos(x)   }{ {(1 +  \cos(x)) }^{2} }  \\  \\  \\  \implies \boxed{ \red{ \sf \frac{2 \sin (x)}{ {(1 +  \cos(x)) }^{2} }} }


amansharma264: Good
VishnuPriya2801: Thank you ! :)
Answered by mathdude500
2

\large\underline\blue{\bold{Given \: }}

\rm :\implies\:y \:  =  \: \dfrac{1 - cosx}{1 + cosx}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{\dfrac{dy}{dx}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\green{\underline{Formula \:  Used \::}}}}  \end{gathered}

\rm :\implies\: \boxed{ \pink{ \bf \: \dfrac{d}{dx}tanx  \:  =  \tt \:  {sec}^{2}x }}

\rm :\implies\: \boxed{ \pink{ \bf \:\dfrac{d}{dx} {x}^{2}  \:  =  \tt \:2x }}

\rm :\implies\: \boxed{ \pink{ \bf \:  \dfrac{d}{dx}x\:  =  \tt \: 1}}

\rm :\implies\: \boxed{ \pink{ \bf \:  1 - cos2x\:  =  \tt \: 2 {sin}^{2}x }}

\rm :\implies\: \boxed{ \pink{ \bf \: 1 + cos2x \:  =  \tt \: 2 {cos}^{2}x }}

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:Let \: y \:  =  \: \dfrac{1 - cosx}{1 + cosx}

\rm :\implies\:y \:  =  \: \dfrac{2 \:  {sin}^{2}\dfrac{x}{2}  }{2 \:  {cos}^{2}\dfrac{x}{2} }

\rm :\implies\:y \:  =  \:  {tan}^{2} \dfrac{x}{2}

On differentiating both sides w. r. t. x, we get

\rm :\implies\:\dfrac{d}{dx}y = \dfrac{d}{dx} {tan}^{2} \dfrac{x}{2}

\rm :\implies\:\dfrac{dy}{dx} = 2 \: tan\dfrac{x}{2} \: \dfrac{d}{dx}(tan\dfrac{x}{2})

\rm :\implies\:\dfrac{dy}{dx} = 2 \: tan\dfrac{x}{2} \:  {sec}^{2} \dfrac{x}{2} \: \dfrac{d}{dx}(\dfrac{x}{2} )

\rm :\implies\:\dfrac{dy}{dx} = 2 \: tan\dfrac{x}{2} \:  {sec}^{2} \dfrac{x}{2} \times \dfrac{1}{2}

\rm :\implies\: \boxed{ \pink{ \bf \: \dfrac{dy}{dx} \:  =  \tt \: tan\dfrac{x}{2} \:  {sec}^{2}\dfrac{x}{2} }}

Similar questions