Math, asked by ashutosh3625, 11 months ago

1/cos(x-a) cos(x-b),Integrate it with respect to x.

Answers

Answered by rishu6845
0

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by ujalasingh385
0

Answer:

\mathbf{\frac{1}{sin(b-a)}log\frac{sec(x-a)}{sec(x-b)}+C}

Step-by-step explanation:

In this question,

\int{\frac{1}{cos(x-a)cos(x-b)}}dx\ =\ \frac{1}{sin(b-a)}\int{\frac{sin(b-a)}{cos(x-a)cos(x-b)}}dx

\frac{1}{sin(b-a)}\int{\frac{sin{(x-a)-(x-b)}}{cos(x-a)cos(x-b)}}dx

\frac{1}{sin(b-a)}\int{\frac{sin(x-a)cos(x-b)-sin(x-b)cos(x-a)}{cos(x-a)cos(x-b)}}dx

\frac{1}{sin(b-a)}\int{\frac{sin(x-a)cos(x-b)}{cos(x-a)cos(x-b)}}dx\ -\ \int{\frac{sin(x-b)cos(x-a)}{{cos(x-a)cos(x-b)}}}dx

\frac{1}{sin(b-a)}\int{tan(x-a)-tan(x-b)}dx

\frac{1}{sin(b-a)}[logsec(x-a)-logsec(x-b)]+C        

Where C is the arbitrary constant

\mathbf{\frac{1}{sin(b-a)}log\frac{sec(x-a)}{sec(x-b)}+C}

Similar questions