(1+cos x +sin x)/(1+cos x-sin x)=( 1+ sin x)/cos x
Answers
To prove :
(1+cos x+sin x) / (1+cos x-sin x) = (1+sin x)/cos x
Proof :
Taking LHS
________________________________
LHS = (1+cos x+sin x) / (1+cos x-sin x )
________________________________
dividing and multiplying by cos x
________________________________
LHS = (1+cos x+sin x) / (1+cos x-sin x) × (cos x)/(cos x)
LHS = (sec x + 1 + tan x)/(sec x + 1 - tan x)
LHS = (sec x + tan x + 1)/(sec x - tan x + 1)
________________________________
using trigonometric identity
sec²A - tan²A = 1
________________________________
LHS = (sec x + tan x + (sec²x - tan²x))/(sec x - tan x + 1)
________________________________
using algebraic identity
( a² - b² ) = ( a + b ) ( a - b )
________________________________
LHS = (sec x + tan x + ( sec + tan x ) (sec x - tan x ) / (sec x - tan x + 1)
LHS = ( sec x + tan x ( 1 + sec x - tan x )) / (sec x - tan x + 1)
LHS = ( sec x + tan x ( 1 + sec x - tan x ))/(1 + sec x - tan x)
________________________________
(1 + sec x - tan x) will be divided by (1 + sec x - tan x)
________________________________
LHS = sec x + tan x
________________________________
putting sec x = 1/cos x , tan x = sin x / cos x
________________________________
LHS = (1/cos x) + (sin x / cos x)
________________________________
Taking LCM
________________________________
LHS = ( 1 + sin x ) / cos x = RHS
________________________________
Hence, PROVED.
Answer:
★ see this attachment .