1/cos0.cos1 + 1/cos1.cos2 +1/cos2.cos3 +.....+1/cos88.cos89 =?
Answers
Answer:
1/cos0.cos1 + 1/cos1.cos2 +1/cos2.cos3 +.....+1/cos88.cos89 = Cos1/(1 - Cos²1)
Step-by-step explanation:
1/cos0.cos1 + 1/cos1.cos2 +1/cos2.cos3 +.....+1/cos88.cos89 =?
multiply & Divide by Sin1
= (1/Sin1) {Sin1/cos0.cos1 + Sin1/cos1.cos2 +Sin1/cos2.cos3 +.....+Sin1/cos88.cos89)
=(1/Sin1) {Sin(1-0)/cos0.cos1 + Sin(2-1)/cos1.cos2 +Sin(3-2)/cos2.cos3 +.....+Sin(89-88)/cos88.cos89)
Sin(A-B)/CosACosB = (SinACosB - CosASinB)/CosACosB = TanA - TanB
= (1/Sin1) {(Tan1 - Tan0) + (Tan2 - Tan1) + (Tan3 - Tan2) +.............. + (Tan89 - Tan88)
=(1/Sin1)( (Tan1 + Tan2 + Tan3 +.............+ Tan89)-(Tan0 + Tan1 + Tan2 +......... + Tan88))
=(1/Sin1) (Tan89 + (Tan1 + Tan2 +......... + Tan88) - (Tan1 + Tan2 +......... + Tan88) - Tan0)
=(1/Sin1) ( Tan89 - Tan0)
Tan 0 = 0
= (1/Sin1)(Tan89)
Tan 89 = Cot1
= (1/Sin1)(Cot1)
= (1/Sin1)(Cos1/Sin1)
= Cos1/Sin²1
= Cos1/(1 - Cos²1)