Math, asked by neeraj8319singh, 11 months ago

1 - cos2 theta + sin2 theta ÷ 1 + cos 2 theta sin2 theta = tan theta

Answers

Answered by MaheswariS
1

\underline{\textbf{To prove:}}

\mathsf{\dfrac{1-cos\,2\theta+sin\,2\theta}{1+cos\,2\theta+sin\,2\theta}=tan\,\theta}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{1-cos\,2\theta+sin\,2\theta}{1+cos\,2\theta+sin\,2\theta}}

\mathsf{=\dfrac{1-(1-2\,sin^2\theta)+2\,sin\,\theta\,cos\,\theta}{1+(2\,cos^2\theta-1)+2\,sin\,\theta\;cos\,\theta}}

\mathsf{=\dfrac{2\,sin^2\theta+2\,sin\,\theta\,cos\,\theta}{2\,cos^2\theta+2\,sin\,\theta\;cos\,\theta}}

\mathsf{=\dfrac{2\,sin\theta(sin\,\theta+cos\,\theta)}{2\,cos\theta(cos\,\theta+sin\,\theta)}}

\mathsf{=\dfrac{sin\theta(sin\,\theta+cos\,\theta)}{cos\theta(sin\,\theta+cos\,\theta)}}

\mathsf{=\dfrac{sin\theta}{cos\theta}}

\mathsf{=tan\,\theta}

\implies\boxed{\bf\dfrac{1-cos\,2\theta+sin\,2\theta}{1+cos\,2\theta+sin\,2\theta}=tan\,\theta}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{4cm}$\\\mathsf{cos\,2A=1-2\,sin^2A}\\\\\mathsf{cos\,2A=2\,cos^2A-1}\\$\end{minipage}}

Similar questions