Math, asked by arnav7066, 3 months ago

(1 - cos²0) sec0 = tan²0

Answers

Answered by Back2Life
5

TO PROVE:

(1 - cos²0) sec0 = tan²0

SOLUTION:

LHS = (1 - cos²θ) secθ

= sin²θ × sec²θ (∵ sinθ = 1 - cos²θ)

= sin²θ × 1/cos²θ (∵ cosθ = 1/secθ)

= (sinθ/cosθ)²

= tan²θ (∵ tanθ = sinθ/cosθ)

RHS = tan²θ

==> LHS = RHS

Hence, Proved ✅

----------------×---------------×-------------->

OTHER TRIGONOMETRIC IDENTITIES

1) cos²A + sin² A = 1

2) cos²A =1 - sin²A

3) sin²A =1 - cos²A

4) sec²A - tan²A = 1

5) 1 + tan²A = sec²A

6) tan²A = sec²A – 1

7) cosec²A - cot²A = 1

8) cot²A + 1 = cosec²A

9) cot²A = cosec²A –1

Answered by cysny123
0

gsdysys jug s jug s kg zgzjgz mg zdgdgkzmgd mg d kh s kh d kg s mg s mg smzjz mg s n.b shz nt sssngsmgsmgszs hr s jtf sfsysjtsts kh s hr s UA ur are

I DON'T KNOW HAHAHAHA, BYE BYEEEE

Similar questions