Math, asked by arnav7066, 5 months ago

(1 - cos²0) sec0 = tan²0

Attachments:

Answers

Answered by BrainlyRish
4

Given : \bf{\star ( 1 - \cos^{2} \theta) sec^{2} \theta =\tan^{2} \theta}

To Prove : \bf{\star ( 1 - \cos^{2} \theta) sec^{2} \theta =\tan^{2} \theta}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \quad \underline{\bf{\star ( 1 - \cos^{2} \theta) sec^{2} \theta =\tan^{2} \theta}}

Here,

  • \sf{L.H.S= ( 1 - \cos^{2} \theta) sec^{2} \theta }

  • \sf{R.H.S =  \tan^{2} \theta}

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: L.H.S \: \::}}\\

\sf{L.H.S= ( 1 - \cos^{2} \theta) sec^{2} \theta }

⠀⠀⠀⠀⠀⠀:\implies \sf{L.H.S= ( 1 - \cos^{2} \theta) sec^{2} \theta }

⠀⠀⠀⠀⠀⠀\frak{As,\:We\:know\:that\:;}\\

\star(1-cos^{2} \theta) = \sin^{2} \theta \\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀:\implies \sf{  \purple{( 1 - \cos^{2} \theta)} sec^{2} \theta } \\\\

⠀⠀⠀⠀⠀⠀:\implies \sf{  \purple{ \sin^{2} \theta} sec^{2} \theta } \\\\

⠀⠀⠀:\implies \sf{   \sec^{2} \theta  sec^{2} \theta } \\\\

⠀⠀⠀⠀⠀⠀\frak{As,\:We\:know\:that\:;} \\ \star\sec^{2} \theta = \dfrac{1}{ \cos^{2} \theta} \\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀:\implies \sf{   \sin^{2} \theta \purple {sec^{2} \theta} } \\\\

⠀⠀⠀⠀⠀⠀:\implies \sf{ \sin^{2} \theta \purple { \dfrac{1}{\cos^{2}\theta }}} \\\\

Or,

⠀⠀⠀:\implies \sf{ \dfrac{\sin^{2} \theta} {\cos^{2} \theta }}\\\\

⠀⠀⠀⠀⠀\frak{As,\:We\:know\:that\:;}\\ \star \qquad \dfrac{\sin^{2}\theta}{\cos^{2}\theta}= \tan^{2} \theta \\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  L.H.S =  \tan^{2}\theta}}}}\:\bf{\bigstar}\\\\

Thus ,

  • \sf{L.H.S =  \tan^{2} \theta}

  • \sf{R.H.S =  \tan^{2} \theta}

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Proved \:}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions