Math, asked by pruthviganeshgo, 10 months ago

1- cos²45°/1+cos² 45°

Answers

Answered by 007Boy
4

Question :-

 \frac{1 -  \cos {}^{2} 45 {}^{0} }{1 +  \cos {}^{2} 45 {}^{0} }

Solution :-

 \frac{1 -  \cos {}^{2} 45 {}^{0}  }{1 +  \cos {}^{2} 45 {}^{0} }

We know that

 \cos(45 {}^{0} )  =  \frac{1}{ \sqrt{2} }

Now put this value

 \frac{1 - ( \frac{1}{ \sqrt{2} } ) {}^{2} }{1 + ( \frac{1}{ \sqrt{2} }) {}^{2}  }

Now solve this

 \frac{1 -  \frac{1}{2} }{1 +  \frac{1}{2} }  =  \frac{ \frac{2 - 1}{2} }{ \frac{2 + 1}{2} }  \\  \\  \frac{ \frac{1}{2} }{ \frac{3}{2} }  =  \frac{1}{2}  \times  \frac{2}{3}  \\  \\  \\= ( \frac{1}{3})  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Answer

Hint:-

  • ( \sqrt{n} ) {}^{2}  = n

  • Example : ( \sqrt{7} ) {}^{2}  = 7
Answered by InfiniteSoul
1

{\bold{\blue{\boxed{\bf{Question}}}}}

\sf \dfrac{1-cos^2 45}{1 + cos^2 45}

{\bold{\blue{\boxed{\bf{Solution}}}}}

\sf \implies\dfrac{1-cos^2 45}{1 + cos^2 45}

{\bold{\blue{\boxed{\bf{cos 45 = \dfrac{1}{\sqrt 2}}}}}}

\sf \implies\dfrac{1-(\dfrac{1}{\sqrt 2})^2}{1 +( \dfrac{1}{\sqrt 2})^2}

\sf \implies\dfrac{\dfrac{ 2 -1}{2}}{ \dfrac{2 + 1}{ 2}}

\sf \implies{\dfrac{1}{2}} \times{ \dfrac{ 2}{ 3}}

\sf\implies\dfrac{ 1}{ 3}

{\bold{\blue{\boxed{\bf{Answer = \dfrac{1}{3}}}}}}

_________________❤

THANK YOU❤

Similar questions