√1-cos²A / 1+cos²A = SinA/ 1+cosA
Answers
Answer:
=
1+cosa
sina
Step-by-step explanation:
Consider L.H.S.
\dfrac{\sqrt{1-\cos a} }{\sqrt{1+\cos a} }
1+cosa
1−cosa
Now multiplying the numerator and denominator by \sqrt{1+\cos a}
1+cosa
we get
\begin{gathered}\dfrac{\sqrt{1-\cos a} }{\sqrt{1+\cos a} }\times \dfrac{\sqrt{1+\cos a}}{\sqrt{1+\cos a}} \\\\= \dfrac{\sqrt{(1-\cos a)(1+\cos a)} }{(\sqrt{1+\cos a})^2 } \\\\=\dfrac{\sqrt{1-\cos^2 a} }{1+\cos a} \\\\ \therefore \text{as we know } \sin^2 a +\cos^2 a =1\\\\ = \dfrac{\sqrt{\sin^2 a} }{1+\cos a} = \dfrac{\sin a}{1+\cos a}\end{gathered}
1+cosa
1−cosa
×
1+cosa
1+cosa
=
(
1+cosa
)
2
(1−cosa)(1+cosa)
=
1+cosa
1−cos
2
a
∴as we know sin
2
a+cos
2
a=1
=
1+cosa
sin
2
a
=
1+cosa
sina
which is equal to R.H.S.
Hence, proved the required result