(1 - cos²A) sec²B + tan²B (1-sin²A) = sin²A + tan²B
Answers
Given : ( 1 − cos²A ) . sec²B + tan²B ( 1− sin²A ) = sin²A + tan²B
To Find : Prove
Solution:
( 1 − cos²A ) . sec²B + tan²B ( 1− sin²A ) = sin²A + tan²B
LHS =
( 1 − cos²A ) . sec²B + tan²B ( 1− sin²A )
using 1 − cos²A = sin²A
= sin²Asec²B + tan²B ( 1− sin²A )
Apply distributive property
= sin²Asec²B + tan²B 1− tan²Bsin²A
take sin²A common in 1st and 3rd term
= sin²A(sec²B - tan²B) + tan²B
sec²B - tan²B = 1
= sin²A(1) + tan²B
= sin²A + tan²B
= RHS
QED
Hence proved
( 1 − cos²A ) . sec²B + tan²B ( 1− sin²A ) = sin²A + tan²B
Learn more:
70. prove that(cos A cosec A - sin A sec A)/cos A + sin A= cosec A ...
https://brainly.in/question/11611272
(1 - cos²A) sec²B + tan²B (1-sin²A) = sin²A + tan²B
https://brainly.in/question/38346263
Step-by-step explanation:
(1 - cos²A) sec²B + tan²B (1-sin²A) = sin²A + tan²B
- 1 - cos²A = sin²A
sin²A sec²B + tan²B - tan²A sin²A = sin²A + tan²B
sin²A ( sec²B - tan²A ) + tan²B = sin²A + tan²B
- sec²B - tan²A = 1
sin²A + tan²B = sin²A + tan²B