Math, asked by lakhanparmar1315, 1 day ago

1+cos2theta/sin2theta=1/2(cot theta/2-tan theta/2

Answers

Answered by mathdude500
9

\large\underline{\sf{To\:prove - }}

\rm \: \dfrac{1 + cos2\theta}{sin2\theta }  = \dfrac{1}{2}\bigg(cot\dfrac{\theta }{2} - tan\dfrac{\theta }{2} \bigg)   \\

\large\underline{\sf{Solution-}}

Consider, LHS

\rm \: \dfrac{1 + cos2\theta }{sin2\theta }  \\

We know,

\boxed{\sf{  \:cos2x =  {2cos}^{2}x - 1 \: }} \\

and

\boxed{\sf{  \:sin2x = 2 \: sinx \: cosx \: }} \\

So, on substituting the values, in above expression, we get

\rm \:  =  \: \dfrac{1 +  {2cos}^{2}\theta  - 1 }{2 \: sin\theta  \: cos\theta }  \\

\rm \:  =  \: \dfrac{ {2cos}^{2} \theta }{2 \: sin\theta cos\theta } \\

\rm \:  =  \: \dfrac{cos\theta }{sin\theta }  \\

\rm \:  =  \: cot\theta  \\

\rm \:  =  \: \dfrac{1}{tan\theta }  \\

We know,

\boxed{\sf{  \:tan2x =  \frac{2 \: tanx}{1 -  {tan}^{2} x}  \: }} \\

So, using this, we get

\rm \:  =  \: \dfrac{1}{\dfrac{2tan\dfrac{\theta }{2}}{1 -  {tan}^{2}\dfrac{\theta }{2} } }  \\

\rm \:  =  \: \dfrac{1}{2}\bigg(\dfrac{1 -  {tan}^{2} \dfrac{\theta }{2}}{tan\dfrac{\theta }{2}} \bigg)  \\

\rm \:  =  \: \dfrac{1}{2}\bigg(\dfrac{1}{tan\dfrac{\theta }{2}} - tan\dfrac{\theta }{2}  \bigg)  \\

\rm \:  =  \: \dfrac{1}{2}\bigg(cot\dfrac{\theta }{2} - tan\dfrac{\theta }{2}  \bigg)  \\

Hence,

\rm\implies \: \:  \boxed{\sf{  \:\: \rm \: \dfrac{1 + cos2\theta}{sin2\theta }  = \dfrac{1}{2}\bigg(cot\dfrac{\theta }{2} - tan\dfrac{\theta }{2} \bigg) \:  \: }}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\boxed{\sf{  \:sin2x = 2sinx \: cosx \:  =  \:  \frac{2tanx}{1 +  {tan}^{2}x }  \: }} \\

\boxed{\sf{  \:cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }} \\

\boxed{\sf{  \:cos2x =  \frac{1 +  {tan}^{2}x }{1 +  {tan}^{2} x}  \: }} \\

\boxed{\sf{  \:tan2x \:  =  \:  \frac{2tanx}{1 -  {tan}^{2} x}  \: }} \\

\boxed{\sf{  \:sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\sf{  \:cos3x =  {4cos}^{3}x - 3cosx \: }} \\

\boxed{\sf{  \:tan3x =  \frac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x }  \: }} \\

Similar questions