1 - cos⁴A answer with solution
Answers
Answered by
11
= > 1 - cos⁴A
= > 1⁴ - cos⁴A
= > ( 1² ) - ( cos²A )²
= > ( 1 - cos²A )( 1 + cos²A )
We know,
sin²A + cos²A = 1
And, sin²A = 1 - cos²A
Substituting the value of 1 - cos²A in solution.
= > ( sin²A )( 1 + cos²A )
= > sin²A( 1 + cos²a )
Therefore,1 - cos⁴A = sin²A( 1 + cos²A )
= > 1⁴ - cos⁴A
= > ( 1² ) - ( cos²A )²
= > ( 1 - cos²A )( 1 + cos²A )
We know,
sin²A + cos²A = 1
And, sin²A = 1 - cos²A
Substituting the value of 1 - cos²A in solution.
= > ( sin²A )( 1 + cos²A )
= > sin²A( 1 + cos²a )
Therefore,1 - cos⁴A = sin²A( 1 + cos²A )
TheLostMonk:
used identity is : a^2 - b^2 = ( a - b ) ( a + b )
Answered by
15
1 - cos⁴A
( 1 )⁴ - cos⁴A
{ ( 1 )² }² - { cos²A }²
{ 1² - cos²A }{ 1² + cos²A ]
{ 1 - cos²A }{ 1 + cos²A }
we know, 1 - cos²A = sin²A
{ sin²A }{ 1 + cos²A }
sin²( 1 + cos²A )
sin²A + sin²Acos²A
( 1 )⁴ - cos⁴A
{ ( 1 )² }² - { cos²A }²
{ 1² - cos²A }{ 1² + cos²A ]
{ 1 - cos²A }{ 1 + cos²A }
we know, 1 - cos²A = sin²A
{ sin²A }{ 1 + cos²A }
sin²( 1 + cos²A )
sin²A + sin²Acos²A
Similar questions