Math, asked by harsh041015, 5 months ago

1-COS4x
Q.10 limx-0
x2​

Answers

Answered by mathdude500
1

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \large \boxed {\red{\tt :  ⟼1 - cosx = 2 {sin}^{2} \dfrac{x}{2} }}

 \large \boxed {\red{\tt :  ⟼ \: \lim_{x\to 0} \: \dfrac{sinx}{x}  \:  = 1}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt :  ⟼ \: \lim_{x\to 0} \: \dfrac{1 - cos4x}{ {x}^{2} }

☆On substituting directly x = 0, we get indeterminant form

\tt :  ⟼ \: \lim_{x\to 0} \: \dfrac{2 \:  {sin}^{2}2x }{ {x}^{2} }

\tt :  ⟼ \: 2 \: \lim_{x\to 0} \: \dfrac{sin2x \: \times  sin2x}{ {x}^{2} }

\tt :  ⟼ \: 2 \: \lim_{x\to 0} \: \dfrac{sin2x}{x}  \times \lim_{x\to 0}\dfrac{sin2x}{x}

\tt :  ⟼ \: 2 \: \lim_{x\to 0} \: \dfrac{sin2x}{2x}  \times 2 \times \lim_{x\to 0}\dfrac{sin2x}{2x}  \times 2

\tt :  ⟼ \: 2 \times 1 \times 2 \times 1 \times 2

\tt :  ⟼ \: 8

 \large \boxed {\red{\tt :  ⟼ \: Hence \: \lim_{x\to 0}\dfrac{1 - cos4x}{ {x}^{2} }  = 8}}

Similar questions