Math, asked by thanksforanswering17, 5 months ago

√1+cosA/√1-cosA= cosecA + cot A​

Answers

Answered by mohitrazz
1

Step-by-step explanation:

see in the attachment above

Attachments:
Answered by SuitableBoy
41

{\huge{\underline{\underline{\rm{Question:-}}}}}

Q) Prove that :

 \sf \:  \dfrac{ \sqrt{1 + cos \: A} }{ \sqrt{1 - cos \: A} }  = cosec \: A + cot \: A

 \\

{\huge{\rm{\underbrace{\underline{Solution\checkmark}}}}}

 \\

 \tt \: L. H. S. :\\  \\   \colon \implies \sf \:  \sqrt{ \frac{1 + cos \:A}{1 - cos \: A} }  \\  \\  \tt \: Rationalise \: the \: denominator: \:  \\  \\  \colon \implies \: \sf \sqrt{ \frac{(1 + cos \: A) \times (1 + cos \: A)}{(1 - cos \: A) \times (1 + cos \: A)} }  \\  \\  \colon \implies \sf \:  \sqrt{ \frac{ {(1 + cos \: A)}^{2} }{ {1}^{2} -  {cos}^{2}   \: A} }  \\  \\  \colon \implies \sf \:  \frac{(1 + cos \: A)}{ \sqrt{1 -  {cos}^{2}  \: A} } \\  \\  \colon \implies \sf \:   \frac{1 + cos \: A}{ \sqrt{ {sin}^{2} \: A } }  \\  \\  \colon \implies \:  \sf \frac{1 + cos \: A}{sin \: A}  \\  \\  \colon \implies \sf \:  \frac{1}{sin \: A}  +  \frac{cos \: A}{sin \: A}  \\  \\  \colon  \implies  \underline{\boxed  { \pink{ \tt \: cosec \: A + cot \: A}}} \\  \\  { \underline{ \boxed{ \purple { \bf{L.H.S.= R. H. S. }}}}}  \:  \: \rm  \therefore \: Proved

 \\

_____________________________

 \\

{\frak{\underline{\underline{\dag\:Formula\:Used:}}}}

 \purple{ \boxed{ \boxed{ \begin{array}{c}   \green{\bull \rm \:1 -  {cos}^{2}  \:  \alpha  =  {sin}^{2}  \:  \alpha  }  \\  \\ \red{ \bull \rm \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \\  \pink{ \rm \bull \:  \dfrac{1}{sin \:  \alpha }  = cosec \:  \alpha } \\  \\  \blue{ \rm \bull \:  \dfrac{cos \:  \alpha }{sin \:  \alpha }  = cot \:  \alpha }\end{array}}}}

 \\

_____________________________

Similar questions