Math, asked by tuleshdandsena35, 5 months ago

1-cosA/1+cosA=(cosecA-cotA)2​

Answers

Answered by Ataraxia
59

To Prove :-

\sf \dfrac{1-cosA}{1+cosA} = (cosecA-cotA)^2

Solution :-

\sf L.H.S = \dfrac{1-cosA}{1+cosA}

Multiply the numerator and denominator by \sf (1-cosA).

        = \sf \dfrac{(1-cosA)(1-cosA)}{(1+cosA)(1-cosA)}

        \sf = \dfrac{(1-cosA)^2}{1-cos^2A}

\bf\dag \ 1- cos^2A = sin^2A

       \sf =  \dfrac{(1-cosA)^2}{sin^2A}

       = \sf \left( \dfrac{1-cosA}{sinA} \right)^2

       = \sf \left( \dfrac{1}{sinA} - \dfrac{cosA}{sinA} \right)^2

\bf\dag \ cosecA = \dfrac{1}{sinA}

\bf\dag \ cotA = \dfrac{cosA}{sinA}

       = \sf (cosecA-cotA)^2

       = \sf R.H.S

Hence proved.

       

Answered by diajain01
47

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

_______________________________________________★

TO PROVE:-

 \tt \bold{ \frac{1- cosA}{1 + cosA  }  =  {(cosec A \:  - cotA)}^{2} }

◉ FORMULA USED:-

  • Cosec A =  \frac{1}{sinA}
  • Cot A =  \frac{Cos A }{ SinA }
  • sin^2\theta+cos^2\theta=1

{\boxed{\underline{\bf{\red{R .H.S}}}}}

 \leadsto \: {(cosec A \:  - cotA)}^{2}

 \leadsto \:  {(\frac{1}{sinA}  - \frac{Cos A }{ SinA })}^{2}

 \leadsto \:  {( \frac{1 - \: Cos A }{ SinA\:  })}^{2}

 \leadsto \:  \frac{ {(1 - \: Cos A)}^{2} }{ \:  \:  { \:Sin }^{2} A}

 \leadsto   \frac{ {(1 - cos A)}^{2}  }{1 -  {cos}^{2} A }

 \leadsto \:  \frac{( \cancel{1 - cos A})(1 - cos A)}{( \cancel{1 - cos A})(1  + cos A)}

 \leadsto \bf \pink{ \frac{(1 - cos A)}{(1  +  cos A)} }

{\boxed{\underline{\bf{\red{ L.H.S}}}}}

THEREFORE, L.H.S = R.H.S

HOPE IT HELPS

Similar questions