Math, asked by kurosaki006, 1 month ago

1 + cosA/1 - cosA = (cosecA + cotA)²​

Answers

Answered by Anonymous
2

=> (1-cosA/1+cosA)

=> (1-cosA/1+cosA)*(1-cosA/1-cosA)

=> (1-cosA)² / (1-cos²A)

=> (1-cosA)² / sin²A

=> (1-cosA)²/(sinA)²

=> (1-cosA/sinA)²

=> (cosecA - cotA)²

Answered by asadsadiq1996
1

Answer:

 \frac{1 + cos(a )}{1   - cos(a)}  \times  \frac{1  + cos(a)}{1  + cos(a)}

Step-by-step explanation:

   \frac{(1 + cos(a))^2}{1 -  {cos}^{2}a }

 \frac{(1 + cos(a))^2}{ {sin}^{2}a }

 {( \frac{1 + cos(a)}{sin(a)} )}^{2}

( \frac{1}{sin(a)}  +  \frac{cos(a)}{sin(a)} )^{2}

(cosec(a) + cot(a)) ^{2}

Hence it is proved.

Similar questions