Math, asked by devarajdk3, 1 year ago

1+cosA/1-cosA=(cosecA+cotA)^2

Answers

Answered by mysticd
7

Solution:

LHS = (1+cosA)/(1-cosA)

= [(1+cosA)/(1-cosA)][(1+cosA)/(1+cosA)]

= (1+cosA)²/(1-cos²A)

= (1+cosA)²/sin²A

= [(1+cosA)/sinA]²

= [1/SinA + cosA/sinA]²

= (cosecA + cotA)²

= RHS

••••

Answered by Anonymous
4

\bf\huge\textbf{\underline{\underline{According\:to\:the\:Question}}}  

Left Hand Side

\bf\huge{\implies\dfrac{1+cosA}{1-cosA}}        

\bf\huge{\implies\dfrac{1+cosA}{1-cosA}\times \dfrac{1+cosA}{1+cosA}}        

 

\bf\huge{\implies\dfrac{(1+cosA)^2}{1-cos^2 A}}        

 

\bf\huge{\implies\dfrac{(1+cosA)^2}{sin^2 A}}        

\bf\huge{\implies(\dfrac{(1+cosA)}{sinA})^2}

\bf\huge{\implies(\dfrac{1}{sinA} + \dfrac{cosA}{sinA})^2}

= (cosecA + cotA)²

\bf\huge\bf\huge{\boxed{\bigstar{{LHS \:= \:RHS}}}}          


devarajdk3: Bro but they have given different answer in the sslc key answer
Similar questions