Math, asked by NancyAmlani, 1 year ago

1-cosA/1+cosA = (cosecA-cotA) ^2 prove that ​

Answers

Answered by virance
0

Step-by-step explanation:

 \frac{1 -  \cos }{1 +  \cos }  = ( {cosec -  \cot })^{2}  \\  \\ \:  \frac{1 -  \cos }{1 +  \cos }  \times  \frac{1 -  \cos }{1 -  \cos } ...........((multiply \: both \: with \: (1 -  \cos))) \\  \\  \frac{(1 -  \cos)  {}^{2} }{ {1}^{2} -  { \cos }^{2}  }  \\  \\  =   \frac{ {1}^{2} - 2 \cos +  { \cos }^{2}   }{ { \sin }^{2} } .. (({1}^{2}  +  { \cos }^{2}  = 1)) \\  \\ now \: give \: personal \:  \: division \:  \:  \\  \frac{ {1}^{2} }{ { \sin }^{2} }  -  \frac{2 \cos}{ { \sin}^{2} }  +   \frac{ { \cos}^{2} }{ { \sin }^{2} }  \\  \\   {cosec}^{2}  - 2 \cot \times cosec +  { \cot }^{2}  \\  \\ (cosec - cot) {}^{2}  \:  \:  \:  \:  \:  \: ......from \:  \: (a - b) {}^{2}

Similar questions