Math, asked by rupsardar18, 5 months ago

√1-cosA/√1+cosA=cosecA-cotA

Answers

Answered by Anonymous
48

 \sf \underline{Question:-}

 \tt \: Prove \:  \: that \:  \:   \sqrt{ \frac{1 - cos \:A }{1 +  \: cos \: A} }  = cosec \: A \:  - cot \:  \: A

 \sf \underline {\: Answer:-}

LHS \:

 \implies \bf \:  \sqrt{ \frac{1 - cos \: A}{1 + cos \: A} }  \\

Rationalising the denominator,

 \implies \bf \:  \sqrt{ \frac{1 - cos \: A \times 1 - cos \:A }{1 + cos \: A \times 1 - cos \: A} }  \\

 \implies \bf \:  \sqrt{ \frac{ {(1 - cos \:A) }^{2} }{1 -  {cos}^{2} A} }  \\

we know that,

1- cos ² A = sin²A

now,

  \implies \bf \:  \sqrt{ \frac{ {(1 - cos \:A) }^{2} }{ {sin}^{2} A} }  \\

 \implies \bf \:  \frac{1 - cos \: A}{sin \: A}  \\

 \implies \bf \:  \frac{1}{sin \: A}  -  \frac{cos \: A}{sin \: A}  \\

we know that,

  • 1/ sin A = cosec A
  • cos A/ sin A = cot A

now,

 \implies \bf \:  cosec \:  \: A - cot \:  \: A

 \bf \red{LHS = RHS}

Similar questions