Math, asked by anwessamohapatraxc, 5 hours ago

√1+cosA /√1-cosA =cosecA +cotA​

Answers

Answered by suchitramaji158
0

Answer:

√1+cosA/√1-cosA

=(√1+cosA)²/(√1-cosA).(√1+cosA)

=1+cosA/√1-cos²A

=1+cosA/sinA

=cosecA+cotA

Answered by Unni007
10

Given,

\sf{\sqrt{\dfrac{1+cosA}{1-cosA}}=cosecA+cotA }

Taking the LHS

\sf{\implies LHS=\sqrt{\dfrac{1+cosA}{1-cosA}}}

\sf{\implies LHS=\sqrt{\dfrac{1+cosA}{1-cosA}}\times \dfrac{1+cosA}{1+cosA} }    

\sf{[Multiplying\  numerator\  and\  denominator\  with\  1 + cos A ]}

\sf{\implies LHS=\sqrt{\dfrac{(1+cosA)^2}{1^2-cos^2A}}}     \sf{[\because ( a + b ) ( a - b ) = a^2 - b ^2] }

\sf{\implies LHS=\sqrt{\dfrac{(1+cosA)^2}{1-cos^2A}}}

\sf{\implies LHS=\sqrt{\dfrac{(1+cosA)^2}{sin^2A}}}     \sf{[\because 1-cos^2A=sin^2A] }

\sf{\implies LHS=\dfrac{1+cosA}{sinA}}     \sf{[ Eliminating \ the \ roots \ with \ the \ squares] }

\sf{\implies LHS=\dfrac{1}{sinA}+\dfrac{cosA}{sinA}}     \sf{[Splitting \ the \ denominators] }

\sf{\implies LHS=cosecA+cotA}

\sf{\implies LHS=RHS}

\boxed{\bold{\sf{\therefore \sqrt{\dfrac{1+cosA}{1-cosA}}=cosecA+cotA }}}

Similar questions