Math, asked by shivsingh700900, 4 months ago

1-cosA/1+cosA=(cotA-cosecA)2^​

Answers

Answered by BrainlyLegend2108
8

\mathcal{\gray{\underbrace{\red{Q}\green{u}\blue{E}\orange{s}\red{T}\green{i}\blue{O}\orange{n}\:}}}

Prove:

\dfrac{1-cosA}{1+ cosA } = (Cot A- Cosec A)^{2}

\huge \fbox{ \underline \blue{Answer }}

Left Hand Side:

= \dfrac{1-cosA}{1+ cosA }  

Take the Conjugate of 1 + cos A {i.e 1 - cos A}

= \dfrac{1-cosA}{1+ cosA } \times  \dfrac{1-cosA}{1- cosA }

= \dfrac{(1-cosA)^{2} }{1-cos^{2}A}

Use the identity 1 - cos²A = sin²A

=\dfrac{(1-cosA)^{2}}{sin^{2}A }

=[\dfrac {1-cosA}{sinA}]^{2}

= (\dfrac{1}{sinA} - \dfrac{cosA}{sinA})^{2}

= (CosecA - CotA )^{2}

\pink{ \boxed{Hence Proved  }}

\underline{\underline{ \sf \huge \red{✪Extra Bytes✪}}}

To solve all trigonometric equation we need to know all trigonometric identities and its functions

They are as follows,

✪ Reciprocal Identities ✪

✧ Sin θ = 1/Cosec θ

✧ Cos θ = 1/Sec θ

✧ Tan θ =  1/cot θ

✪ Pythagorean Identities ✪

✧ Sin²θ + Cos²θ = 1

✧ 1 + tan²θ = sec²θ

✧ 1 + cot²θ = cosec²θ

✪ Ratio Identities ✪

✧ Tan θ = Sin θ/Cos θ

✧ Cot θ = Cos θ/Sin θ

✪ Complementary Angles Identities ✪

✧ Sin (90 – θ) = Cos θ

✧ Cos (90 – θ) = Sin θ

✧ Tan (90 – θ) = Cot θ

✧ Cot ( 90 – θ) = Tan θ

✧ Sec (90 – θ) = Cosec θ

✧ Cosec (90 – θ) = Sec θ

✪ Opposite Angle Identities ✪

✧ Sin (-θ) = – Sin θ

✧ Cos (-θ) = Cos θ

✧ Tan (-θ) = – Tan θ

✧ Cot (-θ) = – Cot θ

✧ Sec (-θ) = Sec θ

✧ Cosec (-θ) = -Cosec θ

ℌope ℑt ℌelps

Thanks for asking

Learn about this question at:

https://brainly.in/question/939563

Similar questions