(1+COSA) (1+cosB)(1+COSC) = (1-ACOSA) (1-cosB) (1-cosC) = ?
Answers
Given that -
(1-cos a)(1-cos b)(1-cos c)=(1+cos a)(1+ cos b)(1+ cos c)
To prove-
any of the value of the family is sina sinb sinc
case1
multiply both sides by (1-cos a)(1- cos b)(1- cos c)
We get,
[ (1- cos a)(1- cos b)(1- cos c)]² = [sina sin sinc]²
So we find,
(1- cos a)(1- cos b)(1- cos c) = sina sinb sinc
Case 2
------- multiply both sides by (1+cos a)(1 + cos b)(1 + cos c)
So we find again,
(1 + cos a)(1+ cos b)(1+ cos c) = sina sinb sin c
We find that,
any of the member in two cases can be equal to sina sinb sinc
Hello(。・//ε//・。)
Answer:~
Given:-(1+cos a)(1+cos b)(1+cos c)=(1-cos a)(1-cos b)(1-cos c)
Case 1:-
Multiplying both sides by (1-cos a)(1-cos b)(1-cos c) we get,
(1-cos a)(1+cos a)(1-cos b)(1+cos b)(1-cos c)(1+cos c)=((1-cos a)(1-cos b)(1-cos c))^2
=>(1-cos^2a)(1-cos^2b)(1-cos^2c)=((1-cos a)(1-cos b)(1-cos c))^2
=>sin^2a×sin^2b×sin^2c=((1-cos a)(1-cos b)(1-cos c))^2
=>(1-cos a)(1-cos b)(1-cos c)=sin a×sin b×sin c
Case 2:-
Again, on multiplying (1+cos a)(1+cos b)(1+cos c) on both sides,
We get,((1+cos a)(1+cos b)(1+cos c))^2=sin^2a×sin^2b×sin^2c
=>(1+cos a)(1+cos b)(1+cos c)=sin a×sin b×sin c
Therefore, we found that both the sides is equal to sin a×sin b×sin c.
[Hence, proved]