(1-cosA)(1-cosB)(1-cosC)=(1+cosA)(1+cosB)(1+cosC)then show that each side is equal to +-(sinAsinBsinC)
Answers
Answered by
2
Step-by-step explanation:
( 1-cosA ) ( 1-cosB ) ( 1-cosC ) = ( 1+cosA ) ( 1+cosB ) ( 1+cosC )
Now multiply the both sides by ( 1-cosA ) ( 1-cosB ) ( 1-cosC )
⇒( 1+cosA ) ( 1-cosA ) ( 1+cosB ) ( 1-cosB ) ( 1+cosC ) ( 1-cosC )= ( 1-cosA )^2 ( 1-cosB )^2 ( 1-cosC )^2
⇒ sin²A sin²B sin²C = ( 1-cosA )² * ( 1-cosB )² * ( 1-cosC )²
⇒ √ (sin²A sin²B sin²C ) = √ [ ( 1-cosA )² * ( 1-cosB )² * ( 1-cosC )² ] [apply root in both side]
⇒ (sinA * sinB * sinC ) = ( 1-cosA ) ( 1-cosB ) ( 1-cosC )
hence proved each side is equal to +- (sinA sinB sinC)
Similar questions