Math, asked by bibekanandadas13, 1 year ago

( 1/ cosA +sin A - 1 ) + (1/cos A + sin A +1 ) = cosec A + sec A​

Answers

Answered by ashishks1912
13

GIVEN :

The equation is \frac{1}{cosA+sinA-1}+\frac{1}{cosA+sinA+1}=cosecA+secA

TO PROVE :

The given equation is true.

SOLUTION :

Given equation is \frac{1}{cosA+sinA-1}+\frac{1}{cosA+sinA+1}=cosecA+secA

We have to prove that the given equation is true.

That is prove that LHS = RHS

Taking LHS \frac{1}{cosA+sinA-1}+\frac{1}{cosA+sinA+1}\hfill (1)

Now \frac{1}{(cosA+sinA)-1}

Multiply and divide by denominator's conjugate,

\frac{1}{(cosA+sinA)-1}\times \frac{(cosA+sinA)+1}{(cosA+sinA)+1}

=\frac{(cosA+sinA)+1}{(cosA+sinA)^2-1^2}

By using the algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{cosA+sinA+1}{cos^2A+2cosA sinA+sin^2A-1}

By using the trignometric identity :

sin^2x+cos^2x=1

=\frac{cosA+sinA+1}{1+2cosA sinA-1}

\frac{1}{(cosA+sinA)-1}=\frac{cosA+sinA+1}{2cosA sinA}\hfill (2)

Now \frac{1}{(cosA+sinA)+1}

Multiply and divide by denominator's conjugate,

\frac{1}{(cosA+sinA)+1}\times \frac{(cosA+sinA)-1}{(cosA+sinA)-1}

=\frac{(cosA+sinA)-1}{(cosA+sinA)^2-1^2}

By using the algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{cosA+sinA-1}{cos^2A+2cosA sinA+sin^2A-1}

By using the trignometric identity :

sin^2x+cos^2x=1

=\frac{cosA+sinA-1}{1+2cosA sinA-1}

\frac{1}{(cosA+sinA)+1}=\frac{cosA+sinA-1}{2cosA sinA}\hfill (3)

Substituting the equations (2) and (3) we get,

\frac{1}{cosA+sinA-1}+\frac{1}{cosA+sinA+1}=\frac{cosA+sinA+1}{2cosA sinA}+\frac{cosA+sinA-1}{2cosA sinA}

=\frac{cosA+sinA+1+cosA+sinA-1}{2cosA sinA}

=\frac{2cosA+2sinA}{2cosA sinA}

=\frac{2(cosA+sinA)}{2cosA sinA}

=\frac{cosA+sinA}{cosA sinA}

=\frac{cosA}{cosA sinA}+\frac{sinA}{cosA sinA}

=\frac{1}{sinA}+\frac{1}{cosA}

By using the trignometric identities :

\frac{1}{cosx}=secx

\frac{1}{sinx}=cosecx

=cosecA+secA =RHS

∴ LHS = RHS

\frac{1}{cosA+sinA-1}+\frac{1}{cosA+sinA+1}=cosecA+secA

Hence proved

Answered by MysticSohamS
12

Answer:

hey here is your proof in above pics

pls mark it as brainliest

Attachments:
Similar questions