Math, asked by NidhiSingh888, 1 year ago

1+cosA-sin²A/sinA(1+cosA)=cotA proove that

Answers

Answered by Anonymous
4

We have to prove that :

 \frac{1 +  \cos\alpha  -  { \sin }^{2} \alpha  }{ \sin\alpha (1 +  \cos\alpha )}  =  \cot\alpha

As we know that :

 { \sin}^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1 \\  \\  =  > 1 -  { \sin }^{2}   \alpha  = { \cos}^{2} \alpha

On taking L.H.S. :

 \frac{1 +  \cos \alpha  -  { \sin }^{2}   \alpha }{ \sin \alpha (1 +  \cos \alpha ) }  \\  \\  =  >  \frac{1 -  { \sin }^{2}  \alpha  +  \cos\alpha  }{ \sin \alpha (1 +  \cos\alpha ) }  \\  \\  =  >  \frac{ { \cos}^{2}  \alpha  +  \cos\alpha  }{ \sin \alpha (1 +  \cos \alpha  )}  \\  \\  =  >  \frac{ \cos\alpha ( \cos \alpha + 1) }{ \sin \alpha(1 +  \cos \alpha )  }  \\  \\  =  >  \frac{ \cos \alpha }{ \sin \alpha  }  \\  \\  =  >  \cot\alpha

L.H.S. = R.H.S.

HENCE PROVED

Similar questions