Math, asked by kanhab233, 4 months ago

1+cosA/sinA+sinA/1+cosA=2/sinA​

Answers

Answered by BrainlyPopularman
13

TO PROVE :

 \\ \implies \bf \dfrac{1+ \cos A}{ \sin A}+ \dfrac{ \sin A}{1+ \cos A}= \dfrac{2}{ \sin A}\\

SOLUTION :

• Let's take L.H.S. –

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{1+ \cos A}{ \sin A}+ \dfrac{ \sin A}{1+ \cos A}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{(1+ \cos A)^{2} +(\sin A)^{2} }{( \sin A)(1+ \cos A)}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{1 +\cos^{2}  A  + 2\cos A+\sin^{2} A}{( \sin A)(1+ \cos A)}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{1 +2\cos A+ \{\sin^{2} A +\cos^{2} A \}}{( \sin A)(1+ \cos A)}\\

• We know that –

 \\ \longrightarrow\bf \sin^{2} \theta+\cos^{2} \theta = 1\\

• So that –

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{1 +2\cos A+ \{1\}}{( \sin A)(1+ \cos A)}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{1 +2\cos A+1}{( \sin A)(1+ \cos A)}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{2 +2\cos A}{( \sin A)(1+ \cos A)}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{2 \cancel{(1 +\cos A)}}{( \sin A) \cancel{(1+ \cos A)}}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf \dfrac{2}{\sin A}\\

 \\ \:  \:  \:  =  \:  \:  \:  \bf R.H.S. \\

 \\ \implies\large { \boxed{ \boxed{ \bf \green{Hence \:  \: Proved}}}} \\


BrainlyHero420: Perfect as always :p
BrainlyPopularman: Thanks
HA7SH: Perfect answer: D
BrainlyPopularman: Tq
suraj5070: Plz 1 help
Anonymous: Great :p
Answered by INSIDI0US
114

Step-by-step explanation:

 \large\bf{\underline{\underline{To\ prove:-}}}

 \bf : \implies {\dfrac{1\ +\ cos\ A}{sin\ A}\ +\ \dfrac{sin\ A}{1\ +\ cos\ A}\ =\ \dfrac{2}{sin\ A}}

 \large\bf{\underline{\underline{Finding\ solution:-}}}

● By taking L.H.S:-

 \bf : \implies {\dfrac{1\ +\ cos\ A}{sin\ A}\ +\ \dfrac{sin\ A}{1\ +\ cos\ A}} \\ \\ \\ \bf : \implies {\dfrac{(1\ +\ cos\ A)^2\ +\ (sin\ A)^2}{(sin\ A)(1\ +\ cos\ A)}} \\ \\ \\ \bf : \implies {\dfrac{1\ +\ cos^2\ A\ +\ 2\ cos\ A\ +\ sin^2\ A}{sin\ A\ +\ 1\ +\ cos\ A}} \\ \\ \\ \bf : \implies {\dfrac{1\ +\ 2\ cos\ A\ +\ [sin^2\ A\ +\ cos^2\ A]}{(sin\ A)(1\ +\ cos\ A)}}

 \bf{\underline{\underline{As\ we\ know\ that:-}}}

 \bf : \implies {sin^2\ \theta \ +\ cos^2\ \theta \ =\ 1.}

 \large\bf{\underline{\underline{So\ here:-}}}

 \bf : \implies {\dfrac{1\ +\ 2\ cos\ A\ +\ (1)}{(sin\ A)(1\ +\ cos\ A)}} \\ \\ \\ \bf : \implies {\dfrac{1\ +\ 2\ cos\ A\ +\ 1}{(sin\ A)(1\ +\ cos\ A)}} \\ \\ \\ \bf : \implies {\dfrac{2\ +\ 2\ cos\ A}{(sin\ A)(1\ +\ cos\ A)}} \\ \\ \\ \bf : \implies {\dfrac{2(1\ +\ cos\ A)}{(sin\ A)(1\ +\ cos\ A)}} \\ \\ \\ \bf : \implies {\purple{\underline{\boxed{\bf \dfrac{2}{sin\ A}}}}}\bigstar

 \bf : \implies {L.H.S}

Hence Proved .


HA7SH: Perfect :)
INSIDI0US: Thanks : D
BrainlyHero420: Awesome ☃️
INSIDI0US: Thanks ❤
Similar questions