Math, asked by omkarmagadum2004, 10 months ago

1+cosa/sina-sina/1+cosa=2cota​

Answers

Answered by Sharad001
37

Question :-

Prove that :

 \longmapsto \:  \frac{1 +  \cos a}{ \sin a}   -  \frac{ \sin a}{1 +  \cos a}  = 2 \cot a \\

Used Formula :-

 \star  \:  \: \boxed{ \sf{(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy} \\  \\  \star  \:  \: \boxed{ \sf \frac{ \cos \theta}{ \sin \theta}  =  \cot \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\  \star  \:  \:  \boxed{  \: { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Explanation :-

Taking left hand side (LHS)

 \mapsto \:  \frac{1 +  \cos a}{ \sin a}   -  \frac{ \sin a}{1 +  \cos a} \:  \\  \\  \mapsto \:  \frac{ {(1 +  \cos a)}^{2} -  { \sin}^{2}  a}{ \sin a(1 +  \cos a)}  \\  \\  \mapsto \:  \frac{1 +  { \cos}^{2} a + 2 \cos a -   { \sin}^{2}a }{ \sin a(1 +  \cos a)}  \\  \\  \mapsto \:  \frac{1 +  { \cos}^{2}a + 2 \cos a - (1  -  { \cos}^{2}a)  }{ \sin a(1 +  \cos a)}  \\  \\  \to \:  \frac{ \cancel{1} +  { \cos}^{2} a + 2 \cos a - \cancel{ 1} +  { \cos}^{2}a }{ \sin a(1 +  \cos a)}  \\  \\  \mapsto \:  \frac{2 { \cos}^{2} a + 2 \cos a}{ \sin a(1 +  \cos a)}  \\  \\  \mapsto \:  \frac{2 \cos a(1 +  \cos a)}{ \sin a(1 +  \cos a)}  \\  \\  \to \: 2 \frac{ \cos a}{ \sin a}  \\  \\  \:  \to \: 2 \cot a

LHS (Left hand side)= RHS (Right hand side )

Hence proved .

Answered by harendrachoubay
11

\dfrac{1+\cos A}{\sin A} -\dfrac{\sin A}{1+\cos A} =2\cot A, proved

Step-by-step explanation:

To prove that, \dfrac{1+\cos A}{\sin A} -\dfrac{\sin A}{1+\cos A} =2\cot A.

L.H.S. = \dfrac{1+\cos A}{\sin A} -\dfrac{\sin A}{1+\cos A}

Taking LCM of denominator part, we get

=\dfrac{(1+\cos A)^2-\sin^2 A}{\sin A(1+\cos A)}

Using the algebraic identity,

(a+b)^{2} =a^{2} +2ab+b^2

=\dfrac{1+\cos^2 A+2\cos A-\sin^2 A}{\sin A(1+\cos A)}

Using the trigonometric identity,

\sin^2 A=1-\cos^2 A

=\dfrac{1+\cos^2 A+2\cos A-(1-\cos^2 A)}{\sin A(1+\cos A)}

=\dfrac{1+\cos^2 A+2\cos A-1+\cos^2 A}{\sin A(1+\cos A)}

=\dfrac{2\cos^2 A+2\cos A}{\sin A(1+\cos A)}

=\dfrac{2\cos A(\cos A+1)}{\sin A(1+\cos A)}

=\dfrac{2\cos A}{\sin A}

= 2\cot A

= R.H.S., proved.

Thus, \dfrac{1+\cos A}{\sin A} -\dfrac{\sin A}{1+\cos A} =2\cot A, proved

Similar questions