Math, asked by lmmahamedali, 9 months ago

1+cosA/sinA - sinA/1+cosA = 2cotA

Answers

Answered by SharmaShivam
4

Question:

\sf{Prove\:that\:\dfrac{1+cosA}{sinA}-\dfrac{sinA}{1+cosA}=2cotA}

Identities Used:

\sf{1-sin^2A=cos^A}\\\\\sf{\dfrac{cosA}{sinA}=cotA}

Solution:

\sf{Taking\:L.H.S.}

\sf{=\dfrac{1+cosA}{sinA}-\dfrac{sinA}{1+cosA}}

\sf{=\dfrac{\left(1+cosA\right)^2-sin^2A}{sinA\left(1+cosA\right)}}

\sf{=\dfrac{1+2cosA+cos^2A-sin^2A}{sinA\left(1+cosA\right)}}

\sf{=\dfrac{2cos^2A+2cosA}{sinA\left(1+cosA\right)}}

\sf{=\dfrac{2cosA\left(1+cosA\right)}{sinA\left(1+cosA\right)}}

\sf{=2\dfrac{cosA}{sinA}}

\boxed{\sf{2cotA}}

\sf{\bold{\textit{HENCE\:PROVED}}}

Similar questions