Math, asked by alexwinson98, 1 year ago

(1+cosA)/SinA=SinA/(1-CotA)

Answers

Answered by vrrunda
1
hey it is impossible plz check your question

alexwinson98: Are you sure ?
vrrunda: ya
alexwinson98: ok
vrrunda: you can check your question with putting the value of ¢ in question
Answered by abhi569
3
Your question needs a correction :

cotA will be replaced with cosA ,




Solution :

LHS,
 \frac{1 +  \cos(a) }{ \sin(a) }


Multiply and divide by ( 1 - cos A ) ,


  =  > \frac{(1 +  \cos(a))(1 -  \cos(a) ) }{ \sin(a)(1 -  \cos(a) ) }  \\  \\  \\   \\  =  >  \frac{ {1}^{2}  -  {cos}^{2} (a)}{ \sin(a)(1 -  \cos(a) ) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ | \:  \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2} } \\  \\  \\  \\  =  >  \frac{1 -  {cos}^{2} (a)}{ \sin(a)(1 -  \cos( a) ) }  \\  \\  \\  \\  =  >  \frac{ \sin^{2} (a) }{ \sin(a) ( 1 -  \cos(a) )}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ | 1 -  {cos}^{2} (a) =  {sin}^{2} (a)}\\  \\  \\  \\  =  >  \frac{sin(a)}{1 - cos(a)}



RHS,


 \frac{ \sin(a) }{1 -  \cos(a) }






LHS = RHS



Hence, proved.

alexwinson98: thanks man , got it
abhi569: Welcome
abhi569: :-)
Similar questions