(1
cosec A- cotA
sin
1 +COSA
Answers
Answered by
2
Answer:
LHS = (1 + cos A)/ (1 - cos A)
RHS = tan²A/(secA - 1)²
= [tanA/(sec-1)]^2
= [tanA/((1/cosA)-1)]^2
= [tanA/(1-cosA)/cosA]^2
= [(tanA*cosA)/(1-cosA)]^2
= [sinA/(1-cosA)]^2
= sinA^2/(1-cosA)^2
= (1-cosA^2)/(1-cosA)^2
= [(1-cosA)*(1+cosA)]/[(1-cosA)*(1-cosA)]
= (1+cosA)/(1-cosA)
Answered by
1
Answer:
as cosec a=1/sin a
and cot a=cos a / sin a
so , L.H.S. = cosec a - cot a = 1 /sin a - cos a/ sin a
= (1-cos a) / sin a =(1- cos a)(1 + cos a) / sin a * (1 + cos a )
=1 - cos^2 (a) / sin a *(1+ cos a) =
sin ^2(a)/sin a * (1 + cos a)= sin a /(1 + cos a)= R.H.S.
Step-by-step explanation:
Similar questions