Math, asked by shafinkhot, 1 month ago

1 + cosec theta + cot theta / 1 + cosec theta - cot theta = ???​

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have,

 \rm \frac{1 +  \cosec( \theta) +  \cot( \theta)  }{1 +  \cosec( \theta)  -  \cot( \theta) }  \\

 \rm =  \frac{1 +  \cosec( \theta) +  \cot( \theta)  }{  \cosec ^{2} ( \theta)  -  \cot ^{2} ( \theta) +  \cosec( \theta)  -  \cot( \theta) }  \\

 \rm =  \frac{1 +  \cosec( \theta) +  \cot( \theta)  }{   \{\cosec  ( \theta)  -  \cot  ( \theta) \} \{  \cosec( \theta)   +   \cot( \theta) \} +  \cosec( \theta)  -  \cot( \theta) }  \\

 \rm =  \frac{1 +  \cosec( \theta) +  \cot( \theta)  }{   \{\cosec  ( \theta)  -  \cot  ( \theta) \} \{  \cosec( \theta)   +   \cot( \theta)  + 1 \} }  \\

 \rm =  \frac{1  }{\cosec( \theta)     -   \cot( \theta)   }  \\

 \rm =  \frac{1  }{ \dfrac{1}{\sin( \theta)}     -    \dfrac{\cos( \theta) }{ \sin( \theta) }  }  \\

 \rm =  \frac{1  }{    \dfrac{1 - \cos( \theta) }{ \sin( \theta) }  }  \\

 \rm =  \frac{ \sin( \theta)   }{    1 - \cos( \theta)   }  \\

 \rm =  \frac{ 2\sin \bigg(  \dfrac{\theta}{2} \bigg) \cos \bigg(  \dfrac{\theta}{2} \bigg) }{     2\sin^{2}  \bigg(  \dfrac{\theta}{2} \bigg)   }  \\

 \rm =  \frac{  \cos \bigg(  \dfrac{\theta}{2} \bigg) }{     \sin  \bigg(  \dfrac{\theta}{2} \bigg)   }  \\

 \rm =    \cot \bigg(  \dfrac{\theta}{2} \bigg)  \\

Similar questions