Math, asked by ajjose845, 1 year ago

1/(cosec x + Cot x) - 1/sinx=1/sin x = 1/sin x-1/(cosec x-cot x)

Answers

Answered by nishita19
110
I hope that you can understand all steps....
Attachments:
Answered by pinquancaro
45

Answer and Explanation:

To show : \frac{1}{\csc x+\cot x}-\frac{1}{\sin x} =\frac{1}{\sin x}-\frac{1}{\csc x-\cot x}

Solution :

Taking LHS,

\frac{1}{\csc x+\cot x}-\frac{1}{\sin x}

=\frac{csc^2 x-cot^2 x}{\csc x+\cot x}-\frac{1}{\sin x}

=\frac{(csc x-cot x)(csc x+cot x)}{\csc x+\cot x}-\frac{1}{\sin x}

=csc x-cot x-\csc x

=-cot x

Taking RHS,

\frac{1}{\sin x}-\frac{1}{\csc x-\cot x}

=\frac{1}{\sin x}-\frac{csc^2 x-cot^2 x}{\csc x-\cot x}

=\frac{1}{\sin x}-\frac{(csc x-cot x)(csc x+cot x)}{\csc x-\cot x}

=\csc x-(\csc x+\cot x)

=-\cot x

LHS=RHS

Hence proved.

Similar questions