Math, asked by sk9844hcis, 3 months ago

1.(cosec²A-1) tan²A =1 prove that​

Answers

Answered by VεnusVεronίcα
110

\huge \mathfrak \color{red}{ Question:-}

Prove the following :-

\tt ( {cosec}^{2} A-1)tan^2=1

 \\

\huge \mathfrak \color{red}{Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt LHS \: : \:  (cosec^2A-1)tan^2A=1

 \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt (1 + cot^2A - 1)tan^2A=1 \: {\color{blue}[\because \: cosec^2A=1+cot^2A]}

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt (cot^2A)(tan^2A)=1

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt ( \dfrac{1}{tan^2A} )(tan^2A)=1 \: {\color{blue}[\because \: tan^2A= \dfrac{1}{cot^2A} }

~~~~~~~~{\color{blue}\implies}\tt1 : RHS

 \:  \:  \: \:  ~ \:  \:  \:  \:  \: \underline{\boxed{\color{blue}\tt {\therefore \: LHS=RHS,~hence~proved!}}}

 \\

\huge \mathfrak {\color{red} Additional \: info:-}

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt cos( \dfrac{\pi}{2} - x ) = sinx

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt cosec (x\pm2\pi) = cosecx

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt tan( \dfrac{x}{2})  =  \dfrac{(1 - cosx)}{sinx}

 \:  \:  \:  \:  \:  \:  \:  \: {\color{blue}\implies}\tt tan( \dfrac{\pi}{2}  - x) = cotx

 \\

________________________________

Note:-Swipe your screen from left to right in order to view the answer completely!

Similar questions