Math, asked by amanjoth4087, 7 months ago

1/coseca_cota=coseca+cota

Answers

Answered by Anonymous
24

Given :

  •  \sf{\dfrac{1}{coseca  - cota}}

To Prove :

  • \sf{\dfrac{1}{coseca  - cota} =  cosec a + cot a}

Solution :

\underline{\boxed { \blue{\sf{LHS}}}} =  \sf \pink{\dfrac{1}{coseca  - cota}} \\  \\  \\  \implies{\sf{ \purple{\dfrac{1}{coseca  -  cota} \times \sf\dfrac{coseca  +  cota}{coseca + cota}}}} \\  \\  \\  \implies {\sf{ \green{  \dfrac{cosec a + cot a}{cosec^{2}a - cot^{2} a }}}} \\  \\  \\  \implies {\sf{\orange{cosec a + cot a}}}=\underline{\boxed{\sf {\red{ RHS}}}}

Addition information :

  • tanø = sinø/cosø

  • secø = 1/cosø

  • cotø = 1/tanø = sinø/cosø

  • 1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø

  • tan ø/2 = ±√1 - cosø/1 + cosø

  • sinø = Cos(90° - ø)

  • cosø= sin(90° - ø)

  • tanø = cot(90° - ø)

  • cotø = tan(90° - ø)

  • secø = cosec(90° - ø)
Similar questions