(1+(cosecA tanB)^2)/(1+(cosecC tanB)^2)=(1+(cotA sinB)^2)/(1+(cotC sinB)^2)
)
Answers
Answered by
14
Answer:
LHS
= [ 1 + ( csc a tan b )² ] / [ 1 + ( csc c tan b )² ]
= ( 1 + csc² a tan² b ) / ( 1 + csc² c tan² b )
= { tan² b [ ( 1 / tan² b ) + csc² a ] } / { tan² b [ ( 1 / tan² b ) + csc² c ] }
= ( cot² b + csc² a ) / ( cot² b + csc² c )
= [ ( csc² b - 1 ) + ( 1 + cot² a ) ] / [ ( csc² b - 1 ) + ( 1 + cot² c ) ]
= ( csc² b + cot² a ) / ( csc² b + cot² c )
= { csc² b [ 1 + ( cot² a / csc² b ) ] } / { csc² b [ 1 + ( cot² c / csc² b ) ] }
= ( 1 + cot² a sin² b ) / ( 1 + cot² c sin² b )
= [ 1 + ( cot a sin b )² ] / [ 1 + ( cot c sin b )² ]
= RHS
note: here csc is cosec
Happy To Help !
Similar questions
English,
5 months ago
Computer Science,
5 months ago
Physics,
5 months ago
Computer Science,
10 months ago
Math,
10 months ago