Math, asked by khushi918861, 9 months ago

1/ cosecx +cotx -1/sinx = 1/sinx -1/cosecx - cotx​

Answers

Answered by pulakmath007
18

\displaystyle\huge\green{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

{cosec }^{2}A   - {cot }^{2}  A= 1

CALCULATION

LHS

 \displaystyle \:  \frac{1}{Sin x} -  \frac{1}{ (cosec x + cot x)}

 =    \displaystyle \:   {cosec x} - \frac{ (cosec x  -  cot x)}{  (cosec x + cot x)(cosec x-cot x)}

 =  \displaystyle \:{cosec x} -   \frac{ ({cosec } x  -  cot x)}{  ({cosec }^{2}x   - {cot }^{2}  x)}

 =  \displaystyle \:  {cosec x} - \frac{ ({cosec } x  -  cot x)}{  1}

 =  \displaystyle \: {cosec x} -  { ({cosec } x -  cot x)}

 = {cot x}

RHS

 \displaystyle \:  \frac{1}{ (cosec x-cot x)}- \frac{1}{Sin x}

 =  \displaystyle \:  \frac{ (cosec x + cot x)}{  (cosec x + cot x)(cosec x-cot x)}- {cosec x}

 =  \displaystyle \:  \frac{ ({cosec } x+ cot x)}{  ({cosec }^{2}x   - {cot }^{2}  x)}- {cosec x}

 =  \displaystyle \:  \frac{ ({cosec } x + cot x)}{  1}- {cosec x}

 =  \displaystyle \:  { ({cosec } x + cot x)}- {cosec x}

 = cot x

Hence LHS = RHS

Hence proved

Similar questions
Math, 4 months ago