1+costeta÷sinteta -sinteta ÷1+costeta=2cotteta
Answers
Answered by
0
Step-by-step explanation:
(1+cosθ)/sinθ - sinθ/(1 + cosθ) = 2cotθ;
((1 + cosθ)^2 - sin^2θ) / (sinθ)(1 + cosθ) = 2cotθ;
(1 + cos^2θ + 2cosθ - sin^2θ) / (sinθ)(1 + cosθ) = 2cotθ; ((a+b)^2 = a^2 + b^2 + 2ab);
(1 + cos^2θ + 2cosθ - (1 - cos^2θ)) / (sinθ)(1 + cosθ) = 2cotθ; (cos^2 θ + sin^2 θ = 1);
(1 + cos^2θ + 2cosθ - 1 + cos^2θ) / (sinθ)(1 + cosθ) = 2cotθ;
(2cos^2 θ + 2 cos θ )/ (sinθ)(1 + cosθ) = 2cotθ;
2cos θ (cosθ + 1) / (sinθ)(1 + cosθ) = 2cotθ;
2cosθ / sinθ = 2cotθ;
2 (cosθ/sinθ) = 2 cot θ;
2 cotθ = 2 cot θ;
cotθ = cotθ
Thus, LHS = RHS.
That's all.
Similar questions