Math, asked by arshveer7485, 1 month ago

(1-cosx/1+cosx)^1/2=cosec x -cot x

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{\sqrt{\dfrac{1-cos(x)}{1+cos(x)}}}

\sf{=\sqrt{\dfrac{(1-cos(x))(1-cos(x))}{(1+cos(x))(1-cos(x))}}}

\sf{=\sqrt{\dfrac{(1-cos(x))^2}{1-cos^2(x)}}}

\sf{=\sqrt{\dfrac{(1-cos(x))^2}{sin^2(x)}}}

\sf{=\dfrac{1-cos(x)}{sin(x)}}

\sf{=\dfrac{1}{sin(x)}-\dfrac{cos(x)}{sin(x)}}

\sf{=cosec(x)-cot(x)}

Similar questions