Math, asked by naveenkumaryajjala, 1 year ago

(1-cosx+sinx)/(1+cosx+sinx)=tan(x/2)​

Answers

Answered by khyati4267
0

The solution is in the attachment

Hope it helps you

Thank you

Attachments:
Answered by Anonymous
1

Answer:

■ Here we prove

LHS = RHS

 \frac{(1 -  \cos \: x +  \sin \: x)  }{(1 +  \cos \: x +  \sin \: x) }  \\  \\  =  \frac{(2 \:  { \sin \:  }^{2} \frac{x}{2}     + 2 \sin \:  \frac{x}{2}   \cos \:  \frac{x}{2}  )}{(2 \:  { \sin \:  }^{2} \frac{x}{2}   +2 \sin \:  \frac{x}{2}   \cos \:  \frac{x}{2}  )}

now ,

separate a common , we get

  = \frac{ 2\sin \:   \frac{x}{2}  \:  \: ( \sin \: \frac{x}{2}  +  \cos \:  \frac{x}{2} )}{2\cos \:   \frac{x}{2}  \:  \: ( \cos \: \frac{x}{2}  +  \sin \:  \frac{x}{2} )}  \\  \\  =  \frac{ \sin \: \frac{x}{2} ( \sin \:  \frac{x}{2}  +  \cos \:  \frac{x}{2} ) }{\cos \: \frac{x}{2} ( \sin \:  \frac{x}{2}  +  \cos \:  \frac{x}{2} )}  \\  \\  =  \frac{ \sin \:  \frac{x}{2}  }{ \cos \:  \frac{x}{2}  }  \\  \\  =  \tan \:  \frac{x}{2}

LHS = RHS

hope it helps....

keep smiling &

always shining..........:-)

Similar questions