Math, asked by UrjaPaiRaikar, 9 months ago

1+cosx/sinx + sinx/ 1+cosx = 2/sinx

Plz answer it's urgent!!

The one who answers first I will mark as brainliest!!​

Answers

Answered by BrainlyPopularman
66

TO PROVE :–

 \\ \implies \sf \dfrac{1 +\cos(x) }{ \sin(x) } +\dfrac{ \sin( x) }{1 +\cos(x) } = \dfrac{2}{ \sin(x) } \\

SOLUTION :–

• Let's take L.H.S. –

\\ = \sf \dfrac{1 + \cos(x) }{ \sin(x) } + \dfrac{ \sin( x) }{1 + \cos(x)} \\

\\ = \sf \dfrac{ [1 + \cos(x)]^{2}+ \sin^{2} (x)}{ \sin(x) [1 + \cos(x)]}\\

• Using identity –

\\ \longrightarrow \sf {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab \\

 \\ = \sf \dfrac{ 1 + \cos ^{2} (x)+ 2 \cos(x) + \sin^{2} (x)}{ \sin(x) [1 + \cos(x) ] }\\

 \\ = \sf \dfrac{ 1 + 2 \cos(x)+[ \cos ^{2} (x) + \sin^{2} (x)] }{\sin(x) [1 + \cos(x) ] } \\

\\ = \sf \dfrac{ 1 + 2 \cos(x)+[ \cos ^{2} (x) + \sin^{2} (x)] }{ \sin(x) [1 + \cos(x) ] } \\

\\ = \sf \dfrac{1 + 2 \cos(x)+1 }{ \sin(x) [1 +\cos(x) ] } \:\:\:\:\:\: \: \: \: \: \:\: [ \: \because \:\:\cos ^{2} (x)+ { \sin}^{2} (x) = 1]\\

 \\ = \sf \dfrac{ 2+ 2 \cos(x) }{ \sin(x) [1 + \cos(x) ] } \\

 \\ = \sf \dfrac{ 2 \cancel{[1 + \cos(x) ]}}{ \sin(x) \cancel{[1 + \cos(x) ] }} \\

\\ =\sf \dfrac{ 2}{ \sin(x)} \\

\\ \sf \: = R.H.S . \:\:\:\: (Hence \:\: proved) \\

Answered by Anonymous
5

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 : \implies{\sf{  \frac{1 + cosx}{snx}  +  \frac{sinx}{1 + cosx}  =  \frac{2}{sinx} }} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take L.HS

 : \implies{\sf{ L.H.S =  \frac{1 + cosx}{sinx}  +  \frac{sinx}{1 + cosx}  }} \\ \\

  = {\sf{  \frac{(1 + cosx)(1 + cosx) + (sinx)(sinx)}{(sinx)(1 + cosx)} }} \\ \\

  = {\sf{  \frac{(1 + cosx)^{2} + (sinx)^{2} }{(sinx)(1 + cosx)} }} \\ \\

  \dagger \:  \:  \boxed{\sf{ ( {x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy   }} \\ \\

  = {\sf{  \frac{ {(1)}^{2} +  {cos}^{2}x + 2cosx +  {sin}^{2} x  }{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{ 1 +  ({cos}^{2}x +   {sin}^{2} x )  + 2cosx}{sinx(1 + cosx)} }} \\ \\

  \dagger \:  \:  \boxed{\sf{  \purple{ {sin}^{2} x +  {cos}^{2} x=  1  }} }\\ \\

  = {\sf{  \frac{1 + 1 + 2cosx}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{2 + 2cosx}{sinx(1 + cosx)} }} \\ \\

Take 2 common,

  = {\sf{  \frac{2(1 + cosx)}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{2 \cancel{(1 + cosx)}}{sinx \cancel{(1 + cosx)}} }} \\ \\

  = {\sf{  \frac{2}{sinx} }} \\ \\

Hence L.HS=R.HS

Similar questions