Math, asked by llMIMll, 7 months ago

1+cosx/sinx + sinx/ 1+cosx = 2/sinx prove it ​

Answers

Answered by Anonymous
8

\;\;\underline{\textbf{\textsf{ Given :-}}}

 {\sf{  \frac{1 + cosx}{snx}  +  \frac{sinx}{1 + cosx}  =  \frac{2}{sinx} }} \\ \\

\;\;\underline{\textbf{\textsf{ To Prove   :-}}}

• L.H.S = R.H.S

\;\;\underline{\textbf{\textsf{ Proof   :-}}}

 {\sf{ L.H.S =  \frac{1 + cosx}{sinx}  +  \frac{sinx}{1 + cosx}  }} \\ \\

  = {\sf{  \frac{(1 + cosx)(1 + cosx) + (sinx)(sinx)}{(sinx)(1 + cosx)} }} \\ \\

  = {\sf{  \frac{(1 + cosx)^{2} + (sinx)^{2} }{(sinx)(1 + cosx)} }} \\ \\

  = {\sf{  \frac{ {(1)}^{2} +  {cos}^{2}x + 2cosx +  {sin}^{2} x  }{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{ 1 +  ({cos}^{2}x +   {sin}^{2} x )  + 2cosx}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{1 + 1 + 2cosx}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{2 + 2cosx}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{2(1 + cosx)}{sinx(1 + cosx)} }} \\ \\

  = {\sf{  \frac{2}{sinx} }} \\ \\

  = {\sf{ R.H.S }} \\ \\

 \leadsto  \  {\boxed{\tt{LHS = RHS}}}

 \therefore{ \underline{\bf{(Proved)}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Need to know  :-}}}

  \:  \:  \boxed{\sf{\green{ ( {x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy   }} }\\ \\

 \:  \:  \boxed{\sf{  \green{ {sin}^{2} x +  {cos}^{2} x=  1  }} }\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by haanghhhhsg
0

shhssjbsjvjsvjsvsjvsjvsjvssuvsjvs

Similar questions