Math, asked by suriyakumar5125, 8 months ago

1+cot^2÷1+tan^2 is equal to

Answers

Answered by tanishsingla
0

Answer:

cot²a

Step-by-step explanation:

1+cot²a=cosec²a

1+tan²a=sec²a

cosec²a/sec²a=cot²a

Answered by SujalSirimilla
2

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

  • \sf \dfrac{1+cot^2A}{1+tan^2A}

\LARGE{\bf{\underline{\underline{TO \ FIND:-}}}}

  • \sf \dfrac{1+cot^2A}{1+tan^2A}=?

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

\to \sf \dfrac{1+cot^2A}{1+tan^2A}

▣ We know that 1+cot²A=cosec²A and 1+tan²A=sec²A. Thus, substitute.

\to \sf \dfrac{cosec^2A}{sec^2A}

▣ We know that \sf cosecA=\dfrac{1}{sinA}  and  \sf secA=\dfrac{1}{cosA}. Thus, substitute.

\to \sf \dfrac{\dfrac{1}{sin^2A} }{\dfrac{1}{cos^2A} }

\to \sf \dfrac{cos^2A }{sin^2A }

▣ Here, \sf \dfrac{cos \theta }{sin \theta} = cot \theta. So, we get:

\to \sf{\red{cot^2A}}

∴ (1+cot²A)÷(1+tan²A) is equal to cot²A

Trigonometric identities:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

Similar questions